If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42+x^2+23x=0
a = 1; b = 23; c = +42;
Δ = b2-4ac
Δ = 232-4·1·42
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-19}{2*1}=\frac{-42}{2} =-21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+19}{2*1}=\frac{-4}{2} =-2 $
| -p-4-(2p-5)=4+2 | | z-17.2=17.13 | | -5(6+2k)=-22 | | 180-2x=180-x | | 24+6k=24+6k | | -3(2x-4)=-(8x-12) | | 3x=−45 | | 9=3x+2(x+4) | | 32+12+x+x+12=180 | | x−1−18x−12+65=0 | | 1x+45=2.50x | | x2-10+64=3 | | 3x–5=2x+65 | | 9g+9g^2+5=56g | | 42+x^2+43x=0 | | 1/3a=1/9 | | 8x+2=4(2x-3) | | 1.32(x-4)=x | | F(4)=6x-3 | | 42+x^2+x=0 | | 3x-4(8/3)=5/3 | | x=1512+1/2 | | w-16.7=8 | | 7x-20=-4x+2+17x | | -4+9y=45 | | 8.2+x+x+3.6=27.6 | | 3+a/5=14 | | 7=r/61 | | 3/4d=27/16 | | 2y+60=180 | | 2y+60=18- | | 180-2a+a+10+4=180 |